|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В пространстве расположен выпуклый многогранник, все вершины которого находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет. (Целой называется точка, все три координаты которой – целые числа.) Доказать, что число вершин многогранника не превосходит восьми. Для заданных n и k ( В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°. |
Страница: << 1 2 3 4 [Всего задач: 18]
В вершинах правильного 1983-угольника расставлены числа 1, 2, ..., 1983. Любая его ось симметрии делит числа, не лежащие на ней, на два множества. Назовём расстановку "хорошей" относительно данной оси симметрии, если каждое число одного множества больше симметричного ему числа. Существует ли расстановка, являющаяся "хорошей" относительно любой оси симметрии?
Доказать, что 4m − 4n делится на 3k+1 тогда и только тогда, когда m − n делится на 3k.
В пространстве расположены 2n точек, никакие четыре из которых не лежат в одной плоскости. Проведены n² + 1 отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют
Страница: << 1 2 3 4 [Всего задач: 18] |
|||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|