ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Френкин Б.Р.

Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 194]      



Задача 116072

Темы:   [ Вписанные и описанные многоугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10,11

Bыпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник вписанный?

Прислать комментарий     Решение

Задача 116276

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3+
Классы: 8,9

Докажите, что для любого натурального числа N найдутся такие две пары натуральных чисел, что суммы в парах одинаковы, а произведения отличаются ровно в N раз.

Прислать комментарий     Решение

Задача 66650

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9,10

В остроугольном треугольнике расположен квадрат: две его вершины находятся на одной из сторон треугольника, а две другие по одной на других сторонах. Аналогичные квадраты построены для двух других сторон треугольника. Докажите, что из трех отрезков, равных сторонам этих квадратов, можно составить остроугольный треугольник.
Прислать комментарий     Решение


Задача 66896

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Произведения и факториалы ]
Сложность: 3+
Классы: 8,9,10,11

При каких натуральных $n$ найдутся $n$ последовательных натуральных чисел, произведение которых равно сумме (может быть, других) $n$ последовательных натуральных чисел?
Прислать комментарий     Решение


Задача 66989

Тема:   [ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 6,7,8

Среди 20 школьников состоялся турнир по теннису. Каждый участник проводил каждый день по одной встрече; в итоге за 19 дней каждый сыграл ровно по одному разу со всеми остальными. Теннисный корт в школе один, поэтому матчи шли по очереди. Сразу после своего первого выигрыша в турнире участник получал фирменную майку. Ничьих в теннисе не бывает. Петя стал одиннадцатым участником, получившим майку, а Вася – пятнадцатым. Петя получил свою майку в одиннадцатый день турнира. А в какой день получил майку Вася?
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 194]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .