ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Токарев С.И.

Сергей Иванович Токарев - старший преподаватель Ивановского государственного энергетического университета, заведующий отделом задач в журнале "Математика в школе", член жюри Всероссийской олимпиады школьников по математике, создатель летнего турнира математических боёв им. А.П.Савина.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]      



Задача 109509

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 10,11

Найдите все функции f(x) , определенные при всех положительных x , принимающие положительные значения и удовлетворяющие при любых положительных x и y равенству f(xy)=f(x)f(y) .
Прислать комментарий     Решение


Задача 109611

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10

Можно ли в клетки таблицы 9×9 записать натуральные числа от 1 до 81 так, чтобы сумма чисел в каждом квадрате 3×3 была одна и та же?

Прислать комментарий     Решение

Задача 110052

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 4+
Классы: 8,9,10

Путь от платформы A до платформы B электропоезд прошел за X минут  (0 < X < 60).  Найдите X, если известно, что как в момент отправления от A, так и в момент прибытия в B угол между часовой и минутной стрелками равнялся X градусам.

Прислать комментарий     Решение

Задача 109906

Темы:   [ Взвешивания ]
[ Неопределено ]
Сложность: 4+
Классы: 7,8,9

Имеется 4 монеты, из которых 3 – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за три взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?
Прислать комментарий     Решение


Задача 79594

Тема:   [ Числовые таблицы и их свойства ]
Сложность: 5-
Классы: 8,9,10,11

В клетках таблицы $15\times 15$ расставлены ненулевые числа так, что каждое из них равно произведению всех чисел, стоящих в соседних клетках (соседними называем клетки, имеющие общую сторону). Докажите, что все числа в таблице положительны.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .