Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 151]
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Может ли
а) сумма двух рациональных чисел быть иррациональной?
б) сумма двух иррациональных чисел быть рациональной?
в) иррациональное число в иррациональной степени быть рациональным?
|
|
|
Сложность: 4- Классы: 9,10,11
|
Фирма записала свои расходы в рублях по 100 статьям бюджета, получив список из 100 чисел (у каждого числа не более двух знаков после запятой). Каждый счетовод взял копию списка и нашёл приближённую сумму расходов, действуя следующим образом. Вначале он произвольно выбрал из списка два числа, сложил их, отбросил у суммы знаки после запятой (если они были) и записал результат вместо выбранных двух чисел. С полученным списком из 99 чисел он проделал то же самое, и так далее, пока в списке не осталось одно целое число. Оказалось, что в итоге все счетоводы получили разные результаты. Какое наибольшее число счетоводов могло работать в фирме?
|
|
|
Сложность: 4- Классы: 9,10,11
|
Существует ли целое $n>1$, удовлетворяющее неравенству
$$[\sqrt{n-2} + 2\sqrt{n+2}] < [\sqrt{9n+6}]?$$
(Здесь $[x]$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
|
|
|
Сложность: 4- Классы: 9,10,11
|
Существует ли такое число h, что ни для какого натурального числа n число [h·1969n] не делится на [h·1969n–1]?
|
|
|
Сложность: 4- Классы: 9,10,11
|
В числе a = 0,12457... n-я цифра после запятой равна цифре слева от запятой в числе
Докажите, что α –
иррациональное число.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 151]