ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 115707  (#1)

Тема:   [ Ребусы ]
Сложность: 2
Классы: 6,7,8

Можно ли заменить буквы цифрами в ребусе


ШЕ· СТЬ + 1=СЕ· МЬ

так, чтобы получилось верное равенство (разные буквы нужно заменять разными цифрами, одинаковые буквы — одинаковыми цифрами)?
Прислать комментарий     Решение

Задача 115708  (#2)

Темы:   [ Наглядная геометрия в пространстве ]
[ Арифметика. Устный счет и т.п. ]
[ Объем тела равен сумме объемов его частей ]
Сложность: 2+
Классы: 8,9,10,11

Еще Архимед знал, что шар занимает ровно объема цилиндра, в который он вписан (шар касается стенок, дна и крышки цилиндра). В цилиндрической упаковке находятся 5 стоящих друг на друге шаров. Найдите отношение пустого места к занятому в этой упаковке.


Прислать комментарий     Решение

Задача 115709  (#3)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Системы счисления (прочее) ]
[ Текстовые задачи (прочее) ]
[ Правило произведения ]
Сложность: 3-
Классы: 5,6,7,8,11

Боря и Миша едут в поезде и считают столбы за окном: "один, два, ...". Боря не выговаривает букву "Р", поэтому при счете он пропускает числа, в названии которых есть буква "Р", а называет сразу следующее число без буквы "Р". Миша не выговаривает букву "Ш", поэтому пропускает числа с буквой "Ш". У Бори последний столб получил номер "сто". Какой номер этот столб получил у Миши?

Прислать комментарий     Решение

Задача 115710  (#4)

Темы:   [ Равносоставленные фигуры ]
[ Теорема Пифагора (прямая и обратная) ]
[ Шестиугольники ]
Сложность: 4-
Классы: 7,8,9

Покажите, как разрезать фигуру, изображенную на верхнем рисунке, на три равные части и сложить из этих частей правильный шестиугольник, изображенный на нижнем рисунке. Оставлять дырки и накладывать части друг на друга нельзя.




Прислать комментарий     Решение

Задача 115711  (#5)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Геометрия на клетчатой бумаге ]
[ Малые шевеления ]
Сложность: 3+
Классы: 8,9,10,11

В саду растут яблони и груши — всего 7 деревьев (деревья обоих видов присутствуют). Ближе всех к каждому дереву растет дерево того же вида и дальше всех от каждого дерева растет дерево того же вида. Приведите пример того, как могут располагаться деревья в саду.
Комментарий. Имелось в виду, что если ближайших к данному дереву (или самых дальних от данного дерева) несколько, то условие должно выполнятся для каждого из них.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .