ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 108734  (#1)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3-
Классы: 6,7,8,9

Есть три треугольника: остроугольный, прямоугольный и тупоугольный. Саша взял себе один треугольник, а Боря – два оставшихся. Оказалось, что Боря может приложить (без наложения) один из своих треугольников к другому, и получить треугольник, равный Сашиному. Какой из этих треугольников взял Саша?

Прислать комментарий     Решение

Задача 108735  (#2)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 6,7,8,9

На станции "Лукоморье" продают карточки на 1, 5 и 20 поездок. Все карточки стоят целое число золотых монет. Пять карточек на одну поездку дороже, чем одна на 5 поездок, а 4 карточки на 5 поездок дороже одной карточки на 20 поездок. Оказалось, что самый дешёвый способ проезда для 33-х богатырей — это купить карточек на 35 поездок, потратив на это 33 золотые монеты. Сколько стоит карточка на 5 поездок?

Прислать комментарий     Решение

Задача 108736  (#3)

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8,9

На доске было написано несколько натуральных чисел, причём разность любых двух соседних чисел равна одному и тому же числу. Коля заменил в этой записи разные цифры разными буквами, а одинаковые цифры — одинаковыми буквами. Восстановите исходные числа, если на доске написано Т, ЕЛ, ЕК, ЛА, СС.
Прислать комментарий     Решение


Задача 108737  (#4)

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9

Решите задачу 3 для надписи A, BC, DEF, CGH, CBE, EKG.
Прислать комментарий     Решение


Задача 108738  (#5)

Темы:   [ Параллельность прямых и плоскостей ]
[ Признаки и свойства параллелограмма ]
[ Средняя линия трапеции ]
[ Уравнение плоскости ]
Сложность: 4
Классы: 9,10,11

Маленький Петя подпилил все ножки у квадратной табуретки и четыре отпиленных кусочка потерял. Оказалось, что длины всех кусочков различны, и что табуретка после этого стоит на полу, пусть наклонно, но по-прежнему касаясь пола всеми четырьмя концами ножек. Дедушка решил починить табуретку, однако нашёл только три кусочка с длинами 8, 9 и 10 см. Какой длины может быть четвёртый кусочек?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .