ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите наибольшее шестизначное число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 4556]      



Задача 88143

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Найдите наибольшее число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр.
Прислать комментарий     Решение


Задача 88150

Тема:   [ Математическая логика (прочее) ]
Сложность: 2-
Классы: 5,6,7

Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника  — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника  — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов?
Прислать комментарий     Решение


Задача 88161

Тема:   [ Последовательности (прочее) ]
Сложность: 2-
Классы: 5,6,7

Найдите недостающие числа:

Прислать комментарий     Решение

Задача 88172

Темы:   [ Ребусы ]
[ Арифметические действия. Числовые тождества ]
Сложность: 2-
Классы: 5,6,7

В равенстве 101 – 102 = 1 передвиньте одну цифру так, чтобы оно стало верным.
Прислать комментарий     Решение


Задача 88178

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2-
Классы: 5,6,7

Обязательно ли среди двадцати пяти "медных" монет (т.е. монет достоинством 1, 2, 3, 5 коп.) найдётся семь монет одинакового достоинства?
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .