Страница: 1 [Всего задач: 5]
Задача
67147
(#1)
|
|
Сложность: 3 Классы: 8,9,10,11
|
При каком наибольшем натуральном m число $m! \cdot 2022!$ будет факториалом натурального числа?
Задача
67148
(#2)
|
|
Сложность: 4 Классы: 9,10,11
|
Большая окружность вписана в ромб, каждая из двух меньших окружностей касается двух сторон ромба и большой окружности, как на рисунке. Через точки касания окружностей со сторонами ромба провели четыре штриховые прямые, как на рисунке. Докажите, что они образуют квадрат.
Задача
67149
(#3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
На прямой отмечено 2022 точки так, что каждые две соседние точки расположены на одинаковом расстоянии. Половина точек покрашена в красный цвет, а другая половина – в синий. Может ли сумма длин всевозможных отрезков, у которых левый конец красный, а правый – синий, равняться сумме длин всех отрезков, у которых левый конец синий, а правый – красный? (Концы рассматриваемых отрезков – не обязательно соседние отмеченные точки.)
Задача
67150
(#4)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан остроугольный неравнобедренный треугольник. Одним действием разрешено разрезать один из имеющихся треугольников по медиане на два треугольника. Могут ли через несколько действий все треугольники оказаться равнобедренными?
Задача
67151
(#5)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Доска 2N×2N покрыта неперекрывающимися доминошками 1×2. По доске прошла
хромая ладья, побывав на каждой клетке по одному разу (каждый ход хромой ладьи – на клетку, соседнюю по стороне). Назовём ход
продольным, если это переход из одной клетки доминошки на другую клетку той же доминошки. Каково
а) наибольшее;
б) наименьшее возможное число продольных ходов?
Страница: 1 [Всего задач: 5]