Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 52]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
У Васи есть неограниченный запас брусков 1×1×3 и уголков из трёх кубиков 1×1×1. Вася целиком заполнил ими коробку m×n×k, где $m, n, k$ – целые числа, большие 1.
Докажите, что можно было обойтись лишь уголками.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Любое число $x$, написанное на доске, разрешается заменить либо на 3$x$ + 1, либо на [x/2].
Докажите, что если вначале написано число 1, то такими операциями можно получить любое натуральное число.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Назовём сложностью целого числа $n$ > 1 количество сомножителей в его разложении на простые. Для каких $n$ все числа между $n$ и 2$n$ имеют сложность
а) не больше, чем у $n$;
б) меньше, чем у $n$?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Многочлен $P(x, y)$ таков, что для всякого целого $n\geqslant 0$ каждый из многочленов $P(n, y)$ и $P(x, n)$ либо тождественно равен нулю, либо имеет степень не выше $n$.
Может ли многочлен $P(x, x)$ иметь нечётную степень?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Отрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 52]