ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 105086
Темы:    [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь многоугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь трапеции ]
[ Геометрия на клетчатой бумаге ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

На бумаге "в клеточку" нарисован выпуклый многоугольник M, так что все его вершины находятся в вершинах клеток и ни одна из его сторон не идёт по вертикали или горизонтали. Докажите, что сумма длин вертикальных отрезков линий сетки, заключённых внутри M, равна сумме длин горизонтальных отрезков линий сетки внутри M.


Решение

Докажем, что каждая из рассматриваемых величин равна площади многоугольника M. Проверим это для суммы длин горизонтальных отрезков. Проведём эти отрезки. Тогда M разобьётся на два треугольника и несколько трапеций, причём высоты этих фигур будут равны 1. Осталось выразить площади этих фигур через основания и высоты по известной формуле и сложить. Видно, что каждый горизонтальный отрезок войдёт в сумму два раза, то есть с коэффициентом единица, что и требовалось.

Замечания

5 баллов

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 63
Год 2000
вариант
Класс 10
задача
Номер 3
олимпиада
Название Турнир городов
Турнир
Дата 1999/2000
Номер 21
вариант
Вариант весенний тур, основной вариант, 10-11 класс
Задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .