ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Предположим, что имеется набор функций  f1(x), ...,  fn(x), определённых на отрезке  [a, b].  Докажите неравенство:

Вниз   Решение


Автор: Жуков Г.

По кругу записывают 2015 натуральных чисел так, чтобы каждые два соседних числа различались на их наибольший общий делитель.
Найдите наибольшее натуральное N, на которое гарантированно будет делиться произведение этих 2015 чисел.

ВверхВниз   Решение


a, b и c - длины сторон произвольного треугольника. Докажите, что

$\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3.


Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]      



Задача 60882

Тема:   [ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 8,9,10

Репьюнитами называются числа     Докажите, что если  (m, 10) = 1,  то частное  9En/m,  записанное как n-значное число (возможно с нулями в начале), состоит из нескольких периодов десятичного представления дроби 1/m. Кроме того, если еще выполнены условия  (m, 3) = 1  и En – первый репьюнит, делящийся на m, то число  9En/m  будет совпадать с периодом.

Прислать комментарий     Решение

Задача 60883

Темы:   [ Периодические и непериодические дроби ]
[ Теорема Эйлера ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (m, 30) = 1,  то число, состоящее из цифр периода дроби 1/m, делится на 9.

Прислать комментарий     Решение

Задача 60886

Темы:   [ Периодические и непериодические дроби ]
[ Функция Эйлера ]
Сложность: 3+
Классы: 9,10,11

Обозначим через  L(m)  длину периода дроби 1/m. Докажите, что если  (m, 10) = 1,  то  L(m)  является делителем числа φ(m).

Прислать комментарий     Решение

Задача 60893

Темы:   [ Периодические и непериодические дроби ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 10,11

Найдите последние три цифры периодов дробей 1/107, 1/131, 1/151. (Это можно сделать, не считая предыдущих цифр.)

Прислать комментарий     Решение

Задача 67280

Темы:   [ Десятичные дроби (прочее) ]
[ Ребусы ]
Сложность: 3+
Классы: 6,7,8

В сумме

П,Я + Т,Ь + Д,Р + О,Б + Е,Й

все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно? Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.
Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .