Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 230]
|
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
Можно ли расставить девять различных целых чисел в клетки таблицы $3 \times 3$ так, чтобы произведение чисел в каждой строке равнялось $2025$ и произведение чисел в каждом столбце тоже равнялось $2025$?
|
|
|
Сложность: 3 Классы: 10,11
|
Школьник едет на олимпиаду на метро, платит рубль и получает сдачу. Доказать,
что если он обратно поедет на трамвае, то он сможет уплатить за проезд
без сдачи. (Проезд в метро стоил 50 коп., в трамвае – 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)
|
|
|
Сложность: 3 Классы: 9,10,11
|
Школьник едет на кружок на трамвае, платит рубль и получает сдачу. Доказать,
что если он обратно также поедет в трамвае, то он сможет уплатить за
проезд без сдачи. (
Примечание. Проезд в трамвае стоил 30
коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)
|
|
|
Сложность: 3 Классы: 6,7,8
|
Покупатель взял у продавца товара на 10 р. и дал 25 р. У продавца не нашлось
сдачи, и он разменял деньги у соседа. Когда они расплатились и покупатель
ушёл, сосед обнаружил, что 25 р. фальшивые. Продавец вернул соседу 25 р. и
задумался. Какой убыток понёс продавец?
Белоснежка вырезала из батиста большой квадрат и положила его в сундук. Пришёл Первый Гном, достал квадрат, разрезал его на четыре квадрата и положил все четыре снова в сундук. Потом пришёл Второй Гном, достал один из квадратов, разрезал его на четыре квадрата и положил все четыре снова в сундук. Потом пришёл
Третий Гном. И он достал один из квадратов, разрезал его на четыре квадрата и положил все четыре снова в сундук. То же самое проделали все остальные гномы.
Сколько квадратов лежало в сундуке после того, как ушёл Седьмой Гном?
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 230]