ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 87]      



Задача 66355

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Хорды и секущие (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Пусть R1, R2 и R3 – радиусы трёх окружностей, каждая из которых проходит через вершину треугольника и касается противолежащей стороны.
Докажите, что  1/R1 + 1/R2 + 1/R31/r,  где r – радиус вписанной окружности этого треугольника.

Прислать комментарий     Решение

Задача 67050

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10,11

В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.
Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?

Прислать комментарий     Решение

Задача 66649

Темы:   [ Построение треугольников по различным точкам ]
[ Точка Нагеля. Прямая Нагеля ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Кадыров К.

Постройте треугольник по точке Нагеля, вершине $B$ и основанию высоты, проведенной из этой вершины.
Прислать комментарий     Решение


Задача 115600

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4
Классы: 8,9

В остроугольный треугольник ABC помещены две касающиеся окружности. Одна из них касается сторон AC и BC , а вторая — сторон AB и BC . Докажите, что сумма их радиусов больше радиуса окружности, вписанной в треугольник ABC .
Прислать комментарий     Решение


Задача 52728

Темы:   [ Вневписанные окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Площадь треугольника ABC равна 2$ \sqrt{3}$ - 3, а угол BAC равен 60o. Радиус окружности, касающейся стороны BC и продолжения сторон AB и AC, равен 1. Найдите углы ABC и ACB данного треугольника.

Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .