Страница:
<< 8 9 10 11 12 13 14 [Всего задач: 67]
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)

|
|
|
Сложность: 6- Классы: 9,10,11
|
Пусть
ABCD – вписанный четырёхугольник,
O –
точка пересечения диагоналей
AC и
BD . Пусть окружности,
описанные около треугольников
ABO и
COD , пересекаются в
точке
K . Точка
L такова, что треугольник
BLC подобен
треугольнику
AKD . Докажите, что если четырёхугольник
BLCK
выпуклый, то он он является описанным.
Страница:
<< 8 9 10 11 12 13 14 [Всего задач: 67]