ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC точка P — центр вписанной окружности, а точка Q — центр окружности, описанной около треугольника ABC. Прямая PQ перпендикулярна биссектрисе AP треугольника ABC. Известно, что величина угла PAQ равна $ \alpha$. Найдите углы треугольника.

Вниз   Решение


Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение радиуса вписанной окружности к расстоянию между центрами вписанной и описанной окружностей равно равно m. Найдите углы треугольника.

ВверхВниз   Решение


Ладья стоит на поле a1. За ход разрешается сдвинуть ее на любое число клеток вправо или на любое число клеток вверх. Выигрывает тот, кто поставит ладью на поле h8.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 96]      



Задача 115635

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Катеты прямоугольного треугольника равны 3 и 4. Найдите площадь треугольника с вершинами в точках касания вписанной окружности со сторонами треугольника.
Прислать комментарий     Решение


Задача 115637

Тема:   [ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

На сторонах AB , BC и AC треугольника ABC , площадь которого равна 75, расположены точки M , N и K соответственно. Известно, что M — середина AB , площадь треугольника BMN равна 15, а площадь треугольника AMK равна 25. Найдите площадь треугольника CNK .
Прислать комментарий     Решение


Задача 115638

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9

В треугольник ABC со сторонами  AB = 18  и  BC = 12  вписан параллелограмм BKLM, причём точки K, L и M лежат на сторонах AB, AC и BC соответственно. Известно, что площадь параллелограмма составляет 4/9 площади треугольника ABC. Найдите стороны параллелограмма.

Прислать комментарий     Решение

Задача 116290

Тема:   [ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

На сторонах AB и AC треугольника ABC , площадь которого равна 50, взяты соответственно точки M и K так, что AM:MB = 1:5 , а AK:KC = 3:2 . Найдите площадь треугольника AMK .
Прислать комментарий     Решение


Задача 116355

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Признаки подобия ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9,10

На сторонах BC и AC треугольника ABC взяты соответственно точки M и N, причём  CM : MB = 1 : 3  и  AN : NC = 3 : 2.  Отрезки AM и BN пересекаются в точке K. Найдите площадь четырёхугольника CMKN, если известно, что площадь треугольника ABC равна 1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .