ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 95]      



Задача 55075

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD на диагонали AC взята точка E, причём  AE : EC = 1 : 3,  а на стороне AD взята такая точка F, что  AF : FD = 1 : 2.  Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24.

Прислать комментарий     Решение

Задача 111454

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Отношение площадей подобных треугольников ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC угол при основании AC равен α . Окружность, вписанная в этот треугольник, касается сторон треугольника в точках A1 , B1 , C1 . Найдите отношение площади треугольника A1B1C1 к площади треугольника ABC .
Прислать комментарий     Решение


Задача 111512

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике боковая сторона равна a , основание равно b . Вписанная в этот треугольник окружность касается его сторон в точках M , N и K . Найдите площадь треугольника MNK .
Прислать комментарий     Решение


Задача 111513

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

В треугольнике ABC угол A равен 60o ; AB:AC=3:2 . На сторонах AB и AC расположены соответственно точки M и N так, что BM=MN=NC . Найдите отношение площади треугольника AMN к площади треугольника ABC .
Прислать комментарий     Решение


Задача 115634

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Через середину боковой стороны равнобедренного треугольника со сторонами 12, 18, 18 проведена прямая, разбивающая треугольник на части, площади которых относятся как 1:2. Найдите длину отрезка этой прямой, заключённого внутри треугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 95]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .