|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что угол величиной no, где n — целое число, не делящееся на 3, можно разделить на n равных частей с помощью циркуля и линейки. |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 306]
Основание MQ трапеции MNPQ (
MQ || NP, MQ > NP) является
диаметром окружности, которая касается прямой MN в точке M и
пересекает сторону PQ в точке K, причём
PQ = 4
Окружность, построенная на высоте AD прямоугольного
треугольника ABC как на диаметре, пересекает катет AB в точке
K, а катет AC — в точке M. Отрезок KM пересекает высоту
AD в точке L. Известно, что отрезки AK, AL и AM составляют
геометрическую прогрессию (т.е.
На сторонах AC и BC неравнобедренного треугольника ABC во внешнюю сторону построены как на основаниях равнобедренные треугольники AB'C и CA'B с одинаковыми углами при основаниях, равными φ. Перпендикуляр, проведённый из вершины C к отрезку A'B', пересекает серединный перпендикуляр к отрезку AB в точке C1. Найдите угол AC1B.
Из произвольной точки M окружности, описанной около прямоугольника, опустили перпендикуляры MP и MQ на две его противоположные стороны, и перпендикуляры MR и MT — на продолжения двух других сторон. Докажите, что прямые PR и QT перпендикулярны друг другу, а их точка пересечения принадлежит диагонали прямоугольника.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 306] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|