|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан треугольник ABC. На стороне AB как на основании построен во внешнюю сторону равнобедренный треугольник ABC' с углом при вершине 120°, а на стороне AC построен во внутреннюю сторону правильный треугольник ACB'. Точка K – середина отрезка BB'. Найдите углы треугольника KCC'. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 402]
Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.
Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой.
Докажите, что при повороте окружность переходит в окружность.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 402] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|