ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 108539

Темы:   [ Метод координат на плоскости ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9,10

Найдите длину хорды, которую на прямой y = 3x высекает окружность (x + 1)2 + (y - 2)2 = 25.

Прислать комментарий     Решение


Задача 35550

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Хорды и секущие (прочее) ]
Сложность: 3
Классы: 9

Через фиксированную точку внутри окружности проводятся всевозможные пары взаимно перпендикулярных хорд.
Докажите, что сумма квадратов их длин – величина постоянная.

Прислать комментарий     Решение

Задача 65701

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Хорды и секущие (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 9,10,11

На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что  AK = KN = DN  и  BL = BC = CM.  Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан.

Прислать комментарий     Решение

Задача 78528

Темы:   [ Вспомогательные равные треугольники ]
[ Хорды и секущие (прочее) ]
Сложность: 3
Классы: 7,8

На отрезке AB выбрана произвольно точка C и на отрезках AB, AC и BC, как на диаметрах, построены окружности Ω1, Ω2 и Ω3. Через точку C проводится произвольная прямая, пересекающая окружность Ω1 в точках P и Q, а окружности Ω2 и Ω3 в точках R и S соответственно. Доказать, что  PR = QS.

Прислать комментарий     Решение

Задача 53111

Темы:   [ Пересекающиеся окружности ]
[ Хорды и секущие (прочее) ]
Сложность: 3+
Классы: 8,9

Две равные окружности пересекаются в точке C. Через точку C проведены две прямые, пересекающие данные окружности в точках A, B и M, N соответственно. Прямая AB параллельна линии центров, а прямая MN образует угол α с линией центров. Известно, что  AB = a.  Найдите NM.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .