ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 2974]      



Задача 52737

Темы:   [ Касающиеся окружности ]
[ Периметр треугольника ]
Сложность: 3-
Классы: 8,9

Две равные касающиеся окружности с центрами O1 и O2 касаются внутренним образом окружности радиуса R с центром O.
Найдите периметр треугольника OO1O2.

Прислать комментарий     Решение

Задача 52879

Темы:   [ Диаметр, хорды и секущие ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

AB и CD – две параллельные хорды, расположенные по разные стороны от центра O окружности радиуса 15.  AB = 18,  CD = 24.
Найдите расстояние между хордами.

Прислать комментарий     Решение

Задача 52880

Темы:   [ Диаметр, хорды и секущие ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

Две параллельные хорды AB и CD расположены по одну сторону от центра O окружности радиуса 30.  AB = 48,  CD = 36.
Найдите расстояние между хордами.

Прислать комментарий     Решение

Задача 52975

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

В квадрат ABCD со стороной a вписана окружность, которая касается стороны CD в точке E.
Найдите хорду, соединяющую точки, в которых окружность пересекается с прямой AE.

Прислать комментарий     Решение

Задача 53289

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3-
Классы: 8,9

Из точки A, находящейся вне окружности радиуса r, проведены к этой окружности касательные AB и AC (B и C – точки касания), причём  ∠BAC = α.  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 2974]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .