ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52975
Темы:    [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В квадрат ABCD со стороной a вписана окружность, которая касается стороны CD в точке E.
Найдите хорду, соединяющую точки, в которых окружность пересекается с прямой AE.


Решение

  Пусть PE – искомая хорда, M – точка касания окружности со стороной AD (см. рис.). Тогда  AM = a/2AE² = AD² + DE² = 5a²/4.
  По теореме о касательной и секущей  


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 642

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .