ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В квадрате 6×6 отмечают несколько клеток так, что из любой отмеченной можно пройти в любую другую отмеченную, переходя только через общие стороны отмеченных клеток. Отмеченную клетку называют концевой, если она граничит по стороне ровно с одной отмеченной. Отметьте несколько клеток так, чтобы получилось   а) 10,  б) 11,  в) 12 концевых клеток.

Вниз   Решение


Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.
Какую максимальную сумму Петя может снять со счета, если других денег у него нет?

ВверхВниз   Решение


a, b, c – положительные числа. Докажите, что  

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

ВверхВниз   Решение


Внутри правильного шестиугольника со стороной 1 расположено 7 точек. Докажите, что среди них найдутся две точки на расстоянии не больше 1.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 369]      



Задача 21984

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2-
Классы: 6,7,8

Пятеро молодых рабочих получили на всех зарплату - 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

Прислать комментарий     Решение


Задача 88178

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2-
Классы: 5,6,7

Обязательно ли среди двадцати пяти "медных" монет (т.е. монет достоинством 1, 2, 3, 5 коп.) найдётся семь монет одинакового достоинства?
Прислать комментарий     Решение


Задача 103987

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2-
Классы: 5,6,7

a) Докажите, что в любой футбольной команде есть два игрока, которые родились в один и тот же день недели.
b) Докажите, что среди жителей Москвы найдутся десять тысяч, празднующих день рождения в один и тот же день.
Прислать комментарий     Решение


Задача 21970

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 5,6,7

В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?
Прислать комментарий     Решение


Задача 21971

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 6,7

В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 369]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .