ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 181]      



Задача 54892

Темы:   [ Две пары подобных треугольников ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4-
Классы: 8,9

Прямая, проходящая через точку пересечения медиан треугольника ABC, пересекает стороны BA и BC в точках A' и C' соответственно. При этом
BA' < BA = 4,  BC = 2,  BA'·BC' = 4.  Найдите BA'.

Прислать комментарий     Решение

Задача 64915

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 9,10

Даны точки A, B. Найдите геометрическое место таких точек C, что C, середины отрезков AC, BC и точка пересечения медиан треугольника ABC лежат на одной окружности.

Прислать комментарий     Решение

Задача 108162

Темы:   [ Признаки и свойства параллелограмма ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

На сторонах BC, CA и AB треугольника ABC выбраны соответственно точки A1, B1 и C1, причём медианы A1A2, B1B2 и C1C2 треугольника A1B1C1 соответственно параллельны прямым AB, BC и CA. В каком отношении точки A1, B1 и C1 делят стороны треугольника ABC?

Прислать комментарий     Решение

Задача 115508

Темы:   [ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теорема косинусов ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9,10

В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.

Прислать комментарий     Решение

Задача 115734

Темы:   [ ГМТ - прямая или отрезок ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9

Имеются две параллельные прямые p1 и p2. Точки A и B лежат на p1, а C – на p2. Будем перемещать отрезок BC параллельно самому себе и рассмотрим все треугольники ABC, полученные таким образом. Найдите геометрическое место точек, являющихся в этих треугольниках:
  а) точками пересечения высот;
  б) точками пересечения медиан;
  в) центрами описанных окружностей.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .