Страница:
<< 17 18 19 20 21 22 23 >> [Всего задач: 209]
По кругу стоят 12 детей. Мальчики всегда говорят правду мальчикам и врут девочкам, а девочки всегда говорят правду девочкам и врут мальчикам. Каждый из них сказал одну фразу своему соседу справа: "Ты – мальчик" или "Ты – девочка". Таких фраз оказалось поровну. Сколько мальчиков и сколько девочек стоит по кругу?
На доске нарисованы три четырёхугольника. Петя сказал: "На доске нарисованы по крайней мере две трапеции". Вася сказал: "На доске нарисованы по крайней мере два прямоугольника". Коля сказал: "На доске нарисованы по крайней мере два ромба". Известно, что один из мальчиков сказал неправду, а двое других – правду. Докажите, что среди нарисованных на доске четырёхугольников есть квадрат.
|
|
|
Сложность: 3 Классы: 5,6,7
|
Математик с пятью детьми зашёл в пиццерию.
Маша: Мне с помидорами и чтоб без колбасы.
Ваня: А мне с грибами.
Даша: Я буду без помидоров.
Никита: А я с помидорами. Но без грибов!
Игорь: И я без грибов. Зато с колбасой!
Папа: Да, с такими привередами одной пиццей явно не обойдёшься...
Сможет ли математик заказать две пиццы и угостить каждого рeбенка такой, какую тот просил, или все же придется три пиццы заказывать?
|
|
|
Сложность: 3 Классы: 7,8,9
|
На острове живут лжецы, которые всегда лгут, и рыцари, которые всегда говорят правду. Каждый из них сделал по два заявления: 1) "Среди моих друзей – нечётное количество рыцарей"; 2) "Среди моих друзей – чётное количество лжецов". Чётно или нечётно количество жителей острова?
|
|
|
Сложность: 3 Классы: 5,6,7
|
Квадрат 4 × 4 называется магическим, если в его клетках встречаются все числа от 1 до 16, а суммы чисел в столбцах, строках и двух диагоналях равны между собой. Шестиклассник Сеня начал составлять магический квадрат и поставил в какую-то клетку число 1. Его младший брат Лёня решил ему помочь и поставил числа 2 и 3 в клетки, соседние по стороне с числом 1. Сможет ли Сеня после такой помощи составить магический квадрат?
Страница:
<< 17 18 19 20 21 22 23 >> [Всего задач: 209]