ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Лист бумаги имеет форму круга. Можно ли провести на нем пять отрезков, каждый из которых соединяет две точки на границе листа так, чтобы среди частей, на которые эти отрезки делят лист, нашлись пятиугольник и два четырехугольника?

Вниз   Решение


а) Есть три одинаковых больших сосуда. В одном – 3 л сиропа, в другом – 20 л воды, третий – пустой. Можно выливать из одного сосуда всю жидкость в другой или в раковину. Можно выбрать два сосуда и доливать в один из них из третьего, пока уровни жидкости в выбранных сосудах не сравняются. Как получить 10 л разбавленного 30%-го сиропа?

б) То же, но воды – N л. При каких целых N можно получить 10 л разбавленного 30%-го сиропа?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 35129

Темы:   [ Комбинаторика (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9,10

Трое играют в настольный теннис, причем игрок, проигравший партию, уступает место игроку, не участвовавшему в ней. В итоге оказалось, что первый игрок сыграл 10 партий, второй – 21. Сколько партий сыграл третий игрок?

Прислать комментарий     Решение

Задача 35410

Темы:   [ Комбинаторика (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 8,9,10

По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

Прислать комментарий     Решение

Задача 35479

Тема:   [ Комбинаторика (прочее) ]
Сложность: 3
Классы: 7,8,9

За круглым столом расселись 10 мальчиков и 15 девочек. Оказалось, что имеется ровно 5 пар мальчиков, сидящих рядом.
Сколько пар девочек, сидящих рядом?

Прислать комментарий     Решение

Задача 35558

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Оценка + пример ]
Сложность: 3
Классы: 9,10,11

Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M.
Какое наибольшее число элементов может быть в M?

Прислать комментарий     Решение

Задача 67499

Темы:   [ Комбинаторика (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8,9,10,11

В классе $N$ школьников, среди них образовалось несколько компаний. Общительностью школьника назовём количество людей в наибольшей компании, куда он входит (если ни в одну не входит, то общительность равна $1$). Оказалось, что у всех девочек в классе общительность разная. Каково наибольшее возможное количество девочек в классе?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .