ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]      



Задача 66549

Темы:   [ Переправы ]
[ Комбинаторика (прочее) ]
Сложность: 4
Классы: 6,7

Пять друзей подошли к реке и обнаружили на берегу лодку, в которой могут поместиться все пятеро. Они решили покататься на лодке. Каждый раз с одного берега на другой переправляется компания из одного или нескольких человек. Друзья хотят организовать катание так, чтобы каждая возможная компания переправилась ровно один раз. Получится ли у них это сделать?
Прислать комментарий     Решение


Задача 67519

Темы:   [ Делимость чисел. Общие свойства ]
[ Комбинаторика (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

Пусть $A$ — набор из $n>1$ различных натуральных чисел. Для каждой пары чисел $a,b\in A$, где $a < b$, подсчитаем, сколько чисел в $A$ являются делителями числа $b-a$. Какое наибольшее значение может принимать сумма полученных $\frac{n(n-1)}2$ чисел?
Прислать комментарий     Решение


Задача 67458

Темы:   [ Процессы и операции ]
[ Комбинаторика (прочее) ]
Сложность: 5
Классы: 9,10,11

Около таверны стоят $100$ эльфов, $100$ гномов и $100$ орков. Сначала в неё заходят $10$ эльфов, $10$ гномов и $10$ орков. Затем каждую минуту из неё выходит одно существо и тут же заходит другое, причём всегда после выхода эльфа заходит гном, после выхода гнома – орк, а после выхода орка – эльф. Могло ли оказаться так, что в какой-то момент в таверне побывали все возможные компании из $30$ существ ровно по одному разу? Все $300$ существ различны.
Прислать комментарий     Решение


Задача 116231

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Комбинаторика (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 5
Классы: 10,11

Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении  a : (1 – a)  по весу, где  0 < a < 1.  Верно ли, что на любом промежутке длины 0,001 из интервала  (0, 1)  найдётся значение a, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов?

Прислать комментарий     Решение

Задача 97774

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Комбинаторика (прочее) ]
[ Двоичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 5+
Классы: 9,10,11

Автор: Анджанс А.

N друзей одновременно узнали N новостей, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями.
Каждый разговор длится 1 час. За один разговор можно передать сколько угодно новостей.
Какое минимальное количество часов необходимо, чтобы все узнали все новости? Рассмотрите три случая:
  а)  N = 64,
  б)  N = 55,
  в)  N = 100.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .