Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 285]
а) Двое по очереди ставят слонов в клетки шахматной
доски. Очередным ходом надо побить хотя бы одну небитую клетку.
Слон бьет и клетку, на которой стоит. Проигрывает тот, кто не
может сделать ход.
б) Та же игра, но с ладьями.
|
|
|
Сложность: 3+ Классы: 7,8,9
|
Имеются две кучки конфет: в одной - 20, в другой
- 21. За ход нужно съесть одну из кучек, а вторую разделить на
две не обязательно равных кучки. Проигрывает тот, кто не может
сделать ход.
|
|
|
Сложность: 3+ Классы: 6,7,8
|
Игра начинается с числа 0. За ход разрешается
прибавить к имеющемуся числу любое натуральное число от 1 до 9.
Выигрывает тот, кто получит число 100.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
2n конфет разложены по n коробкам. Девочка и мальчик по очереди берут по одной конфете, первой выбирает девочка.
Докажите, что мальчик может выбирать конфеты так, чтобы две последние конфеты оказались из одной коробки.
|
|
|
Сложность: 3+ Классы: 7,8,9
|
Двое мальчиков играют в такую игру: они по очереди ставят ладьи на шахматную доску. Выигрывает тот, при ходе которого все клетки доски оказываются битыми поставленными фигурами. Кто выиграет, если оба стараются играть наилучшим образом?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 285]