Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 117]
|
|
Сложность: 4- Классы: 8,9,10
|
Васе задали на дом уравнение x² + p1x + q1 = 0, где p1 и q1 – целые числа. Он нашел его корни p2 и q2 и написал новое уравнение x² + p2x + q2 = 0. Повторив операцию еще трижды, Вася заметил, что он решал четыре квадратных уравнения и каждое имело два различных целых корня (если из двух возможных уравнений два различных корня имело ровно одно, то Вася всегда выбирал его, а если оба – любое). Однако, как ни старался Вася, у него не получилось составить пятое уравнение так, чтобы оно имело два различных вещественных корня, и Вася сильно расстроился. Какое уравнение Васе задали на дом?
|
|
Сложность: 4- Классы: 9,10,11
|
Даны уравнения ax² + bx + c = 0 (1) и – ax² + bx + c (2). Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения ½ ax² + bx + c, что либо x1 ≤ x3 ≤ x2, либо x1 ≥ x3 ≥ x2.
|
|
Сложность: 4- Классы: 9,10
|
Все значения квадратного трёхчлена ax² + bx + c на отрезке [0, 1] по модулю не превосходят 1.
Какое наибольшее значение при этом может иметь величина |a| + |b| + |c|?
|
|
Сложность: 4- Классы: 8,9,10
|
x1 – вещественный корень уравнения x² + ax + b = 0, x2 – вещественный корень уравнения x² – ax – b = 0.
Доказать, что уравнение x² + 2ax + 2b = 0 имеет вещественный корень, заключённый между x1 и x2. (a и b – вещественные числа).
|
|
Сложность: 4- Классы: 8,9,10
|
Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
1) проверять, равны ли выбранные два числа,
2) складывать выбранные числа,
3) по выбранным числам a и b находить корни уравнения x² + ax + b = 0, а если корней нет, выдавать сообщение об этом.
Результаты всех действий заносятся в память. Первоначально в памяти записано одно число x. Как с помощью МК-97 узнать, равно ли это число единице?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 117]