ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79]      



Задача 109495

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

Прислать комментарий     Решение

Задача 111640

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

Существуют ли такие три числа, что если их поставить в одном порядке в качестве коэффициентов квадратного трёхчлена, то он имеет два положительных корня, а если в другом – два отрицательных?

Прислать комментарий     Решение

Задача 115444

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 10,11

При каких значениях c числа  sin α  и  cos α  являются корнями квадратного уравнения  5x² – 3x + c = 0  (α – некоторый угол)?

Прислать комментарий     Решение

Задача 116948

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

P(x) и Q(x) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена P(x) в трёхчлен Q(x), равна сумме двух чисел, получаемых при подстановке корней трёхчлена Q(x) в трёхчлен P(x). Докажите, что дискриминанты трёхчленов P(x) и Q(x) равны.

Прислать комментарий     Решение

Задача 60924

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Симметрические многочлены ]
Сложность: 3+
Классы: 8,9,10

Пусть x1, x2 – корни уравнения  x² + px + q = 0.  Выразите через p и q следующие выражения:
а)     б)     в)     г)  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .