ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть Q — вторая точка Брокара треугольника ABCO — центр его описанной окружности, A1, B1 и C1 — центры описанных окружностей треугольников CAQ, ABQ и BCQ. Докажите, что  $ \triangle$A1B1C1 $ \sim$ $ \triangle$ABC и O — первая точка Брокара треугольника A1B1C1.

Вниз   Решение


а) Докажите, что угол Брокара любого треугольника не превосходит  30o.
б) Внутри треугольника ABC взята точка M. Докажите, что один из углов ABM, BCM и CAM не превосходит  30o.

ВверхВниз   Решение


а) Докажите, что внутри треугольника ABC существует такая точка P, что  $ \angle$ABP = $ \angle$CAP = $ \angle$BCP.
б) На сторонах треугольника ABC внешним образом построены подобные ему треугольники  CA1B, CAB1 и C1AB (углы при первых вершинах всех четырех треугольников равны и т. д.). Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке, причем эта точка совпадает с точкой задачи а).

ВверхВниз   Решение


а) Через точку Брокара P треугольника ABC проведены прямые AP, BP и CP, пересекающие описанную окружность в точках A1, B1 и C1. Докажите, что  $ \triangle$ABC = $ \triangle$B1C1A1.
б) Треугольник ABC вписан в окружность S. Докажите, что треугольник, образованный точками пересечения прямых PA, PB и PC с окружностью S, может быть равен треугольнику ABC не более чем для восьми различных точек P. (Предполагается, что точки пересечения прямых PA, PB и PC с окружностью отличны от точек A, B и C.)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200]      



Задача 30863

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 7

Докажите, что  2(x² + y²) ≥ (x + y)²  при любых x и y.

Прислать комментарий     Решение

Задача 30864

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 7,8

Докажите, что     при x, y > 0.

Прислать комментарий     Решение

Задача 30865

Темы:   [ Неравенство Коши ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что  x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.

Прислать комментарий     Решение

Задача 98061

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 7,8

Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.

Прислать комментарий     Решение

Задача 109146

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 8,9,10

Найти наименьшее значение выражения  x + 1/4x  при положительных значениях x.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .