ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 116982

Темы:   [ Куб ]
[ Остовы многогранных фигур ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 5,6,7

Автор: Рукшин С.

На поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба.
Какое наименьшее количество звеньев этой ломаной может совпасть с рёбрами куба?

Прислать комментарий     Решение

Задача 98053

Темы:   [ Правильные многогранники (прочее) ]
[ Остовы многогранных фигур ]
[ Связность и разложение на связные компоненты ]
Сложность: 4
Классы: 10,11

Какое минимальное количество точек на поверхности
   а) додекаэдра,
   б) икосаэдра
надо отметить, чтобы на каждой грани была хотя бы одна отмеченная точка?

Прислать комментарий     Решение

Задача 73754

Темы:   [ Параллелепипеды (прочее) ]
[ Остовы многогранных фигур ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Cерединный перпендикуляр и ГМТ ]
[ Сочетания и размещения ]
Сложность: 4+
Классы: 10,11

В пространстве заданы четыре точки, не лежащие в одной плоскости.
Сколько существует различных параллелепипедов, для которых эти точки служат вершинами?

Прислать комментарий     Решение

Задача 66598

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Остовы многогранных фигур ]
[ Правильные многогранники. Двойственность и взаимосвязи ]
Сложность: 4+
Классы: 10,11

Выпуклый многогранник с вершинами в серединах ребер некоторого куба называется кубооктаэдром. В сечении кубооктаэдра плоскостью получился правильный многоугольник. Какое наибольшее число сторон он может иметь?
Прислать комментарий     Решение


Задача 35765

Темы:   [ Степень вершины ]
[ Комбинаторная геометрия (прочее) ]
[ Остовы многогранных фигур ]
Сложность: 2+
Классы: 8,9

Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .