ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Белая плоскость произвольным образом забрызгана чёрной тушью. Доказать, что для любого положительного l существует отрезок длины l, у которого оба конца одного цвета.

Вниз   Решение


Дана прямая MN и две точки A и B по одну сторону от нее. Постройте на прямой MN точку X так, что  ∠AXM = 2∠BXN.

ВверхВниз   Решение


а) Во всех клетках квадрата 20×20 стоят солдатики. Ваня называет число d, а Петя переставляет солдатиков так, чтобы каждый передвинулся на расстояние не меньше d (расстояние берётся между центрами старой и новой клеток). При каких d это возможно?
б) Эта же задача для квадрата 21×21.

ВверхВниз   Решение


Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 47]      



Задача 109801

Темы:   [ Свойства сечений ]
[ Прямоугольные параллелепипеды ]
[ Ортогональная проекция (прочее) ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 6
Классы: 10,11

В прямоугольном параллелепипеде проведено сечение, являющееся шестиугольником. Известно, что этот шестиугольник можно поместить в некоторый прямоугольник Π . Докажите, что в прямоугольник Π можно поместить одну из граней параллелепипеда.
Прислать комментарий     Решение


Задача 76549

Темы:   [ Равногранный тетраэдр ]
[ Проектирование помогает решить задачу ]
[ Ортогональная проекция (прочее) ]
Сложность: 6+
Классы: 10,11

В треугольной пирамиде все 4 грани имеют одинаковую площадь. Докажите, что они равны.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 [Всего задач: 47]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .