ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дан тетраэдр AB С D , в котором AB = AC = 5 , AD = BC = 4 , BD = CD= 3 . Найдите DM , где M – точка пересечения медиан грани ABC .

Вниз   Решение


Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным.

ВверхВниз   Решение


Числа 1, 2, 3, ..., 101 выписаны в ряд в каком-то порядке.
Докажите, что из них можно вычеркнуть 90 так, что оставшиеся 11 будут расположены по их величине (либо возрастая, либо убывая).

ВверхВниз   Решение


Cлава перемножил первые n натуральных чисел, а Валера перемножил первые m чётных натуральных чисел (n и m больше 1). В результате у них получилось одно и то же число. Докажите, что хотя бы один из мальчиков ошибся.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 121]      



Задача 66024

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В произведении семи натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 13 раз?

Прислать комментарий     Решение

Задача 66994

Темы:   [ Произведения и факториалы ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

В строку записано 2020 натуральных чисел. Каждое из них, начиная с третьего, делится и на предыдущее, и на сумму двух предыдущих.
Какое наименьшее значение может принимать последнее число в строке?

Прислать комментарий     Решение

Задача 78123

Тема:   [ Произведения и факториалы ]
Сложность: 3+
Классы: 9,10,11

Разбить число 1957 на 12 целых положительных слагаемых a1, a2, ..., a12 так, чтобы произведение a1!a2!...a12! было минимально.

Прислать комментарий     Решение

Задача 78516

Темы:   [ Произведения и факториалы ]
[ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9

Найти все такие натуральные числа n, что число  (n – 1)!  не делится на n².

Прислать комментарий     Решение

Задача 98533

Темы:   [ Произведения и факториалы ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Cлава перемножил первые n натуральных чисел, а Валера перемножил первые m чётных натуральных чисел (n и m больше 1). В результате у них получилось одно и то же число. Докажите, что хотя бы один из мальчиков ошибся.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .