ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Найдите площадь правильного шестиугольника, описанного около окружности, если известно, что хорда этой окружности, равная 4, удалена от её центра на расстояние, равное 5.

Вниз   Решение


Из бумаги склеено цилиндрическое кольцо, ширина которого равна 1, а длина по окружности равна 4. Можно ли не разрывая сложить это кольцо так, чтобы получился квадрат площади 2?

ВверхВниз   Решение


Пусть  z = x + iy,  w = u + iv.  Найдите
  а)  z + w;   б)  zw;   в)  z/w.

ВверхВниз   Решение


Автор: Фольклор

p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство:  p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]      



Задача 34848

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 2+
Классы: 8,9,10

Найдите сумму всех коэффициентов многочлена  (x² – 3x + 1)100  после раскрытия скобок и приведения подобных членов.

Прислать комментарий     Решение

Задача 97934

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство:  p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.

Прислать комментарий     Решение

Задача 35792

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3-
Классы: 9,10,11

Даны многочлены P1, P2, ... , P5, имеющие суммы коэффициентов, равные 1, 2, 3, 4, 5 соответственно.
Найдите сумму коэффициентов многочлена  Q = P1P2...P5.

Прислать комментарий     Решение

Задача 35597

Темы:   [ Свойства коэффициентов многочлена ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

Найдите сумму коэффициентов при чётных степенях в многочлене, который получается из выражения  f(x) = (x³ – x + 1)100  в результате раскрытия скобок и приведения подобных слагаемых.

Прислать комментарий     Решение

Задача 64955

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3
Классы: 9,10,11

Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .