ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В треугольнике ABC высоты, опущенные на стороны AB и BC, не меньше этих сторон соответственно. Найти углы треугольника.

Вниз   Решение


В таблицу n*n записаны n2 чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел, расположенных по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.

ВверхВниз   Решение


Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении.

ВверхВниз   Решение


Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.  Проведены хорды AC и BD, пересекающиеся в точке M.
Найдите угол AMB.

ВверхВниз   Решение


Докажите, что  $ {\frac{9r}{2S}}$ $ \leq$ $ {\frac{1}{a}}$ + $ {\frac{1}{b}}$ + $ {\frac{1}{c}}$ $ \leq$ $ {\frac{9R}{4S}}$.

ВверхВниз   Решение


Окружность, построенная как на диаметре на меньшей боковой стороне прямоугольной трапеции, касается большей боковой стороны, равной a.
Найдите среднюю линию трапеции.

ВверхВниз   Решение


Может ли наибольший общий делитель двух натуральных чисел быть больше их разности?

ВверхВниз   Решение


Автор: Мерков А.

В колоде 36 карт, разложенных в таком порядке, что масти периодически чередуются в последовательности: пики, трефы, червы, бубны, пики, трефы, червы, бубны, и т. д. С колоды сняли часть, перевернули её как целое и врезали в оставшуюся. После этого карты снимают по четыре. Доказать, что в каждой четвёрке все масти разные.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 98083

Темы:   [ Комбинаторика (прочее) ]
[ Соображения непрерывности ]
Сложность: 3+
Классы: 7,8,9

Автор: Фомин Д.

В ряд стоят 30 сапог: 15 левых и 15 правых. Докажите, что среди некоторых десяти подряд стоящих сапог левых и правых поровну.

Прислать комментарий     Решение

Задача 97786

Тема:   [ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Мерков А.

В колоде 36 карт, разложенных в таком порядке, что масти периодически чередуются в последовательности: пики, трефы, червы, бубны, пики, трефы, червы, бубны, и т. д. С колоды сняли часть, перевернули её как целое и врезали в оставшуюся. После этого карты снимают по четыре. Доказать, что в каждой четвёрке все масти разные.

Прислать комментарий     Решение

Задача 116242

Темы:   [ Комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Эвнин А.Ю.

На новом сайте зарегистрировалось 2000 человек. Каждый пригласил к себе в друзья по 1000 человек. Два человека объявляются друзьями тогда и только тогда, когда каждый из них пригласил другого в друзья. Какое наименьшее количество пар друзей могло образоваться?

Прислать комментарий     Решение

Задача 116247

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 10,11

В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний.

Прислать комментарий     Решение

Задача 35395

Темы:   [ Комбинаторика (прочее) ]
[ Таблицы и турниры (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

На доске n×n расставлено  n – 1  фишек так, что никакие две из них не стоят на соседних (по стороне) клетках.
Докажите, что одну из них можно передвинуть на соседнюю клетку так, чтобы снова никакие две фишки не стояли на соседних клетках.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .