|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Определение. Последовательность чисел a0, a1,...,an,..., которая удовлетворяет с заданными p и q соотношению
называется линейной рекуррентной (возвратной) последовательностью второго порядка. Уравнение
называется характеристическим уравнением последовательности (a n). Докажите, что если числа a0, a1 фиксированы, то все остальные члены последовательности {an} определяются однозначно. Для зашифровки телеграфных сообщений требуется разбить всевозможные десятизначные "слова" – наборы из десяти точек и тире – на две группы так, чтобы каждые два слова одной группы отличались не менее чем в трёх разрядах. Указать способ такого разбиения или доказать, что его не существует. Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить? Чётными или нечётными будут сумма и произведение: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 2458]
Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.
Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?
Чётными или нечётными будут сумма и произведение:
Можно ли доску размером 5×5 заполнить доминошками размером 1×2?
а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 2458] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|