|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Имеется бесконечная шахматная доска. Обозначим через (a, b) поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля (a, b) может сделать ход на любое из восьми полей: (a ± m, b ± n), (a ± n, b ± m), где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно. Найдите максимальное число N, для которого существуют такие N последовательных натуральных чисел, что сумма цифр первого числа делится на 1, сумма цифр второго числа – на 2, сумма цифр третьего числа – на 3, ..., сумма цифр N-го числа – на N. На отрезке [0, 1] числовой оси расположены четыре точки: a, b, c, d. Натуральные числа m и n взаимно просты (не имеют общего делителя, отличного от единицы). Дробь |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 2458]
Доказать: произведение
Известно, что 35! = 10333147966386144929*66651337523200000000. Найдите цифру, заменённую звездочкой.
За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно.
Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999?
а) На столе лежит 21 монета решкой вверх. За одну операцию разрешается перевернуть любые 20 монет. Можно ли за несколько операций добиться, чтобы все монеты легли орлом вверх?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 2458] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|