|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой? Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру a ≠ 0 (все цифры его не меньше a) и при этом получится (x − a)². Даны отрезки a и b. Постройте такой отрезок x, что
Двое по очереди ставят ладей на шахматную доску так, чтобы ладьи не били друг друга. Проигрывает тот, кто не может сделать ход. Кто выиграет? В гости пришло 10 гостей и каждый оставил в коридоре пару калош. Все пары калош имеют разные размеры. Гости начали расходиться по одному, одевая любую пару калош, в которые они могли влезть (т.е. каждый гость мог надеть пару калош, не меньшую, чем его собственные). В какой-то момент обнаружилось, что ни один из оставшихся гостей не может найти себе пару калош, чтобы уйти. Какое максимальное число гостей могло остаться? Найдется ли такое n, при котором |
Страница: 1 [Всего задач: 4]
Найдется ли такое n, при котором
Про бесконечный набор прямоугольников известно, что в нём для любого числа S найдутся прямоугольники суммарной площади больше S.
а) В бесконечной последовательности бумажных прямоугольников площадь n-го прямоугольника равна n². Обязательно ли можно покрыть ими плоскость? Наложения допускаются. б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа N найдутся квадраты суммарной площади больше N?
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с
положительными разностями d1, d2, d3, ... . Может ли случиться, что при этом сумма
1/d1 + 1/d2 + ... + 1/dk не превышает 0,9? Рассмотрите случаи:
Страница: 1 [Всего задач: 4] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|