|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD. Пусть M и N – середины сторон CD и DE правильного шестиугольника ABCDEF. Найдите угол между прямыми AM и BN. С помощью циркуля и линейки через точку внутри данного круга проведите хорду, отсекающую от окружности дугу заданной угловой величины.
Даны различные натуральные числа a, b. На координатной плоскости нарисованы графики функций y = sin ax, y = sin bx и отмечены все точки их пересечения. Докажите, что существует натуральное число c, отличное от a, b и такое, что график функции y = sin cx проходит через все отмеченные точки. Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными? Решить уравнение [x³] + [x²] + [x] = {x} − 1. Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 2458]
Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.
Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?
Чётными или нечётными будут сумма и произведение:
Можно ли доску размером 5×5 заполнить доминошками размером 1×2?
а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 2458] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|