|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K. Найдите площадь треугольника BCK, если BC = a, CA = b.
Проведите через вершину A остроугольного треугольника ABC прямую так, чтобы она не пересекала сторону BC и чтобы сумма расстояний до неё от вершин B и C была наибольшей.
Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата. Трёхчлен ax² + bx + c при всех целых x является точным квадратом. Доказать, что тогда ax² + bx + c = (dx + e)². Высота правильной треугольной пирамиды равна a и образует с боковой гранью угол, косинус которого равен |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 80]
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 80] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|