Версия для печати
Убрать все задачи
Отрезок
MN, параллельный стороне
CD
четырехугольника
ABCD, делит его площадь пополам (точки
M
и
N лежат на сторонах
BC и
AD). Длины отрезков,
проведенных из точек
A и
B параллельно
CD до пересечения
с прямыми
BC и
AD, равны
a и
b. Докажите,
что
MN2 = (
ab +
c2)/2, где
c =
CD.

Решение
M – множество точек на плоскости. Точка O называется "почти центром симметрии" множества M, если из M можно выбросить одну точку так, что для оставшегося множества O является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости?


Решение
Косинус угла между скрещивающимися прямыми
AB и
CD равен
. Точки
E и
F являются серединами
отрезков
AB и
CD соответственно, а прямая
EF перпендикулярна
прямым
AB и
CD . Найдите угол
ACB , если известно, что
AB = 2
,
CD = 2
,
EF =
.

Решение