|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет? Докажите, что площадь S треугольника равна abc/4R. Дана последовательность an = 1 + 2n + ... + 5n. Существуют ли пять идущих подряд её членов, кратных 2005? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]
Найти последнюю цифру числа 71988 + 91988.
p – простое число. Сколько существует способов раскрасить вершины правильного p-угольника в a цветов? (Раскраски, которые можно совместить поворотом, считаются одинаковыми.)
Дана последовательность an = 1 + 2n + ... + 5n. Существуют ли пять идущих подряд её членов, кратных 2005?
Найдите остаток от деления 2100 на 101.
Докажите, что 3003000 – 1 делится на 1001.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|