ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число  ab + a + b.
Какое число может остаться на доске после 19 таких операций?

Вниз   Решение


Доказать, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то объём тетраэдра не меньше, чем h1h2h3/3.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 151]      



Задача 76442

Тема:   [ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

По двум скрещивающимся прямым скользят два отрезка. Доказать, что объём тетраэдра с вершинами в концах этих отрезков не зависит от положения последних.
Прислать комментарий     Решение


Задача 79484

Темы:   [ Объем тетраэдра и пирамиды ]
[ Неравенства с объемами ]
Сложность: 4
Классы: 11

Доказать, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то объём тетраэдра не меньше, чем h1h2h3/3.
Прислать комментарий     Решение


Задача 110414

Темы:   [ Объем тетраэдра и пирамиды ]
[ Двугранный угол ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 10,11

В основании пирамиды SABCD лежит прямоугольник ABCD , в котором AB=a , AD=b ; SC – высота пирамиды, CS=h . Найдите двугранный угол между плоскостями ABS и ADS .
Прислать комментарий     Решение


Задача 110427

Тема:   [ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

В основании пирамиды лежит прямоугольник. Все боковые рёбра равны. Плоскость пересекает боковые рёбра пирамиды, отсекая на них отрезки a , b , c и d (в порядке обхода и считая от общей вершины. Докажите, что += + .
Прислать комментарий     Решение


Задача 111219

Темы:   [ Объем тетраэдра и пирамиды ]
[ Конус ]
Сложность: 4
Классы: 10,11

Конус расположен внутри треугольной пирамиды SABC так, что плоскость его основания совпадает с плоскостью одной из граней пирамиды, а три других грани касаются его боковой поверхности. Найдите объём пирамиды, если длина образующей конуса равна 1, ABS = , BSC = , SCB = .
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 151]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .