ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

По двум скрещивающимся прямым скользят два отрезка. Доказать, что объём тетраэдра с вершинами в концах этих отрезков не зависит от положения последних.

Вниз   Решение


С помощью циркуля и линейки постройте точку так, чтобы касательные, проведённые из неё к двум данным окружностям, были равны данным отрезкам.

ВверхВниз   Решение


В треугольнике ABC угол B прямой, точка M лежит на стороне AC, причём  AM : MC = 1 : 3, ∠ABM = π/6BM = 6.
Найдите угол BAC и расстояние между центрами описанных окружностей треугольников BCM и BAM.

ВверхВниз   Решение


Рассматривается система уравнений:

Докажите, что при некоторых k такая система имеет решение.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 61291

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Тригонометрические замены ]
Сложность: 4+
Классы: 9,10,11

Решите системы:

  a)  
  б)  
  в)  
  г)  

Прислать комментарий     Решение

Задача 65714

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

Найдите все такие пары различных действительных чисел x и y, что  x100y100 = 299(x – y)  и  x200y200 = 2199(x – y).

Прислать комментарий     Решение

Задача 78686

Тема:   [ Системы алгебраических нелинейных уравнений ]
Сложность: 4+
Классы: 11

Рассматривается система уравнений:

Докажите, что при некоторых k такая система имеет решение.

Прислать комментарий     Решение

Задача 60416

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Системы алгебраических нелинейных уравнений ]
Сложность: 3
Классы: 8,9,10

В разложении  (x + y)n  по формуле бинома Ньютона второй член оказался равен 240, третий – 720, а четвёртый – 1080. Найдите x, y и n.

Прислать комментарий     Решение

Задача 65874

Темы:   [ Системы линейных уравнений ]
[ Системы алгебраических нелинейных уравнений ]
[ Системы алгебраических неравенств ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .