|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи По двум скрещивающимся прямым скользят два отрезка. Доказать, что объём тетраэдра с вершинами в концах этих отрезков не зависит от положения последних. С помощью циркуля и линейки постройте точку так, чтобы касательные, проведённые из неё к двум данным окружностям, были равны данным отрезкам.
В треугольнике ABC угол B прямой, точка M лежит на стороне AC, причём AM : MC = 1 : 3 Рассматривается система уравнений: |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
Решите системы: a)
Найдите все такие пары различных действительных чисел x и y, что x100 – y100 = 299(x – y) и x200 – y200 = 2199(x – y).
Рассматривается система уравнений:
В разложении (x + y)n по формуле бинома Ньютона второй член оказался равен 240, третий – 720, а четвёртый – 1080. Найдите x, y и n.
На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|