|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Представьте следующие рациональные числа в виде десятичных дробей: Докажите неравенство для положительных значений переменных: x² + y² + 1 ≥ xy + x + y. Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$ |
Страница: 1 2 3 >> [Всего задач: 12]
а) Впишите в клеточки четыре различные цифры, чтобы произведение дробей равнялось 20/21.
Имеется необычный калькулятор. При включении калькулятора на экране возникает дробь 1/1. При нажатии на кнопку * к числителю дроби, изображенной на экране, прибавляется знаменатель, а знаменатель остается прежним. При нажатии на кнопку $ числитель и знаменатель дроби меняются местами. Других кнопок на калькуляторе нет.
Сравните
Страница: 1 2 3 >> [Всего задач: 12] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|