ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

К юбилею Санкт-Петербургских математических олимпиад монетный двор отчеканил три юбилейные монеты. Одна монета получилась правильно, у второй монеты на обеих сторонах оказалось два орла, а у третьей обе стороны – решки. Директор монетного двора не глядя выбрал одну из этих трёх монет и бросил её наудачу. Выпал орёл. Чему равна вероятность того, что на второй стороне этой монеты тоже орёл?

Вниз   Решение


Дана прямая и две точки A и B, лежащие по одну сторону от этой прямой на равном расстоянии от неё.
Как с помощью циркуля и линейки найти на прямой такую точку C, что произведение  AC·BC  будет наименьшим?

ВверхВниз   Решение


Разрежьте квадрат на пять треугольников так, чтобы площадь одного из этих треугольников равнялась сумме площадей оставшихся.

ВверхВниз   Решение


Для произвольного числа $x$ рассмотрим сумму $$Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\ldots+\left\lfloor\frac{x}{10000}\right\rfloor.$$ Найдите разность $Q(2023) – Q(2022)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)

ВверхВниз   Решение


Дано 100 положительных чисел, сумма которых равна S. Известно, что каждое из чисел меньше, чем S/99. Докажите, что сумма любых двух из этих чисел больше, чем S/99.

ВверхВниз   Решение


Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 121]      



Задача 64848

Темы:   [ Произведения и факториалы ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?

Прислать комментарий     Решение

Задача 64961

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

Какое наименьшее количество множителей требуется вычеркнуть из числа 99! так, чтобы произведение оставшихся множителей оканчивалось на 2?

Прислать комментарий     Решение

Задача 65089

Темы:   [ Произведения и факториалы ]
[ НОД и НОК. Взаимная простота ]
[ Процессы и операции ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида  a + d,  где d взаимно просто с а и  10 ≤ d ≤ 20.
Можно ли через несколько таких операций получить на доске число 18! ?

Прислать комментарий     Решение

Задача 66012

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?

Прислать комментарий     Решение

Задача 66018

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .