|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дано уравнение xn – a1xn–1 – a2xn–2 – ... – an–1x – an = 0, где a1 ≥ 0, a2 ≥ 0, an ≥ 0. Постройте окружность, которая проходила бы через две данные точки и центр которой находился бы на данной прямой.
Перпендикуляры, опущенные из внутренней точки равностороннего треугольника на его стороны, и отрезки, соединяющие эту точку с вершинами, разбивают треугольник на шесть прямоугольных треугольников. Докажите, что сумма площадей трёх из них, взятых через один, равна сумме площадей трёх остальных. В небольшом шотландском городке стояла школа, в которой учились ровно 1000 школьников. У каждого из них был шкаф для одежды – всего 1000 шкафов, причём шкафы были пронумерованы числами о 1 до 1000. А ещё в этой школе жили привидения – ровно 1000 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала первое привидение открыло все шкафы; потом второе привидение закрыло те шкафы, номер которых делился на 2; затем третье привидение поменяло позиции (то есть открыло шкаф, если он был закрыт, и закрыло – если он был открыт) тех шкафов, номер которых делился на 3; следом за ним четвёртое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т.д. Как только тысячное привидение поменяло позицию тысячного шкафа, пропел петух, и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений? Докажите неравенства: |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
Пусть Tα(x, y, z) ≥ Tβ(x, y, z) для всех неотрицательных x, y, z. Докажите, что Определение многочленов Tα смотри в задаче 61417, про показатели смотри в справочнике.
Решить систему уравнений:
Для многочленов f(x) = x² + ax + b и g(y) = y² + py + q с корнями x1, x2 и y1, y2 соответственно, выразите через a, b, p, q их результант R(f, g) = (x1 – y1)(x1 – y2)(x2 – y1)(x2 – y2).
Решите системы: а) б) x(y + z) = 2, y(z + x) = 2, z(x + y) = 3; в) x2 + y2 + x + y = 32, 12(x + y) = 7xy; г) д) x + y + z = 1, xy + xz + yz = –4, x3 + y3 + z3 = 1; е) x2 + y2 = 12, x + y + xy = 9.
Докажите неравенства:
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|