|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата. В треугольнике ABC угол C прямой. Из центра C радиусом AC описана дуга ADE, пересекающая гипотенузу в точке D, а катет CB – в точке E. Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья? Внутри клетчатого прямоугольника периметра 50 клеток по границам клеток вырезана прямоугольная дырка периметра 32 клетки (дырка не содержит граничных клеток). Если разрезать эту фигуру по всем горизонтальным линиям сетки, получится 20 полосок шириной в 1 клетку. А сколько полосок получится, если вместо этого разрезать её по всем вертикальным линиям сетки? (Квадратик 1 × 1 — это тоже полоска!) Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.
Найдите все значения x, удовлетворяющие неравенству (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4a – a² < 0 хотя бы при одном значении a из отрезка [–1, 2]. |
Страница: 1 [Всего задач: 5]
Даны два различных приведённых кубических многочлена F(x) и G(x). Выписали все корни уравнений F(x) = 0, G(x) = 0, F(x) = G(x). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена F(x).
Дан многочлен P(x) = a2nx2n + a2n–1x2n–1 + ... + a1x + a0, у которого каждый коэффициент ai принадлежит отрезку [100, 101].
Найдите все значения параметра r, при которых уравнение (r – 4)x² – 2(r – 3)x + r = 0 имеет два корня, причём каждый из них больше –1.
Найдите все значения x, удовлетворяющие неравенству (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4a – a² < 0 хотя бы при одном значении a из отрезка [–1, 2].
Докажите, что если числа a1, a2, ..., am отличны от нуля и для любого целого k = 0, 1, ..., n (n < m – 1) выполняется равенство:
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|