ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Можно ли в таблице 6×6 расставить числа 0, 1 и –1 так, чтобы все суммы чисел по вертикалям, горизонталям и двум главным диагоналям были различны?

Вниз   Решение


Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.

ВверхВниз   Решение


Незнайка хвастал своими выдающимися способностями умножать числа "в уме". Чтобы его проверить, Знайка предложил ему написать какое-нибудь число, перемножить его цифры и сказать результат. – "1210", – немедленно выпалил Незнайка. – "Ты неправ!" – сказал, подумав, Знайка. Как он обнаружил ошибку, не зная исходного числа?

ВверхВниз   Решение


Вероятность рождения двойняшек в Швамбрании равна p, тройняшки в Швамбрании не рождаются.
  а) Оцените вероятность того, что встреченный на улице швамбранец – один из пары двойняшек?
  б) В некоторой швамбранской семье трое детей. Какова вероятность того, что среди них есть пара двойняшек?
  в) В школах швамбранских двойняшек обязательно зачисляют в один класс. Всего в Швамбрании N первоклассников.
Каково матожидание числа пар двойняшек среди них?

ВверхВниз   Решение


Из внешней точки проведены к окружности секущая, длина которой равна 12, и касательная, равная 2/3 внутреннего отрезка секущей.
Найдите длину касательной.

ВверхВниз   Решение


На стороне AB треугольника ABC отмечена точка K. Отрезок CK пересекает медиану AM треугольника в точке P. Оказалось, что  AK = AP.
Найдите отношение  BK : PM.

ВверхВниз   Решение


Найдите объём правильной треугольной пирамиды со стороной основания a и высотой h .

ВверхВниз   Решение


В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.

ВверхВниз   Решение


а) p,  p + 10,  p + 14  – простые числа. Найдите p.

б) p,  2p + 1,  4p + 1  – простые числа. Найдите p.

ВверхВниз   Решение


Докажите, что если для чисел a, b и c выполняются неравенства | a - b|$ \ge$| c|, | b - c|$ \ge$| a|, | c - a|$ \ge$| b|, то одно из этих чисел равно сумме двух других.

ВверхВниз   Решение


Дана трапеция ABCD с основаниями AD и BC. Биссектрисы углов при вершинах A и B пересекаются в точке M, а биссектрисы углов при вершинах C и D – в точке N. Найдите MN, если известно, что  AB = a,  BC = b,  CD = c  и  AD = d.

ВверхВниз   Решение


При каких значениях параметра a сумма квадратов корней уравнения  x2 + 2ax + 2a2 + 4a + 3 = 0  является наибольшей? Чему равна эта сумма? (Корни рассматриваются с учётом кратности.)

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 61418

Тема:   [ Симметрические многочлены ]
Сложность: 3-
Классы: 9,10,11

Напишите многочлены Tα и нарисуйте соответствующие им диаграммы Юнга для следующих наборов α
  а)  (3, 2);    б)  (3, 2, 1);    в)  (3, 3, 0, 0);    г)  (4, 1, 1, 0).
Определение многочленов Tα смотри в задаче 61417, определение диаграмм Юнга в справочнике.

Прислать комментарий     Решение

Задача 60957

Темы:   [ Симметрические многочлены ]
[ Квадратные уравнения. Теорема Виета ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10

При каком значении параметра m сумма квадратов корней уравнения  x² – (m + 1)x + m – 1 = 0  является наименьшей?

Прислать комментарий     Решение

Задача 60928

Темы:   [ Симметрические многочлены ]
[ Квадратные уравнения. Теорема Виета ]
[ Методы решения задач с параметром ]
Сложность: 3+
Классы: 8,9,10

При каких значениях параметра a сумма квадратов корней уравнения  x2 + 2ax + 2a2 + 4a + 3 = 0  является наибольшей? Чему равна эта сумма? (Корни рассматриваются с учётом кратности.)

Прислать комментарий     Решение

Задача 61032

Темы:   [ Симметрические многочлены ]
[ Теорема Виета ]
Сложность: 3+
Классы: 9,10,11

Числа  x, y, z  удовлетворяют системе
     
Докажите, что хотя бы одно из этих чисел равно a.

Прислать комментарий     Решение

Задача 61030

Темы:   [ Симметрические многочлены ]
[ Теорема Виета ]
Сложность: 4-
Классы: 9,10,11

Выразите через элементарные симметрические многочлены следующие выражения:
  а}  (x + y)(y + z)(x + z);
  б}  x3 + y3 + z3 – 3xyz;
  в}  x3 + y3;
  г)  (x2 + y2)(y2 + z2)(x2 + z2);
  д)  
  е)  x4 + y4 + z4.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .