ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

При помощи ножниц вырежьте в тетрадном листе дырку, через которую мог бы пролезть слон!

Вниз   Решение


С помощью циркуля и линейки постройте квадрат, три вершины которого лежали бы на трёх данных параллельных прямых.

ВверхВниз   Решение


В прямоугольник ABCD вписаны два различных прямоугольника, имеющих общую вершину K на стороне AB . Докажите, что сумма их площадей равна площади прямоугольника ABCD

ВверхВниз   Решение


Углы треугольника α, β, γ удовлетворяют неравенствам sin α > cos β, sin β > cos γ, sin γ > cos α . Докажите, что треугольник остроугольный.

ВверхВниз   Решение


Диагонали вписанного четырёхугольника взаимно перпендикулярны. Докажите, что расстояние от точки пересечения диагоналей до центра описанной окружности равно расстоянию между серединами диагоналей.

ВверхВниз   Решение


Избавьтесь от иррациональности в знаменателе:

а) ;     д) ;
б) ;     е) ;
в) ;     ж) .
г) ;  

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 60872

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Индукция (прочее) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4-
Классы: 8,9,10

Докажите следующие равенства:
  а) = + ;
  б) = 2 cos.

Прислать комментарий     Решение

Задача 79410

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Упростить выражение   .

Прислать комментарий     Решение

Задача 60858

Тема:   [ Доказательство тождеств. Преобразования выражений ]
Сложность: 4
Классы: 8,9,10

Докажите равенство

$\displaystyle \sqrt[3]{6+\sqrt{\frac{847}{27}}}$ + $\displaystyle \sqrt[3]{6-\sqrt{\frac{847}{27}}}$ = 3.


Прислать комментарий     Решение

Задача 60860

Тема:   [ Доказательство тождеств. Преобразования выражений ]
Сложность: 4
Классы: 8,9,10

Вычислите:
а) $ \sqrt[3]{20+\sqrt{392}}$ + $ \sqrt[3]{20-\sqrt{392}}$;
б) $ \sqrt[3]{5\sqrt{2}+7}$ - $ \sqrt[3]{5\sqrt{2}-7}$;
в) $ \sqrt{x+6\sqrt{x-9}}$ + $ \sqrt{x-6\sqrt{x-9}}$    (9 $ \leqslant$ x $ \leqslant$ 18).

Прислать комментарий     Решение

Задача 60870

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 4
Классы: 8,9,10

Избавьтесь от иррациональности в знаменателе:

а) ;     д) ;
б) ;     е) ;
в) ;     ж) .
г) ;  

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .